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Background
Key observables in spectroscopic galaxy surveys:

(1) Angular diameter distance DA
- Exploiting BAO as standard rulers which measure the angular 
diameter distance and expansion rate as a function of redshift.

(2) Radial distance H-1

- Exploiting redshift distortions as intrinsic anisotropy to decompose 
the radial distance represented by the inverse of Hubble rate as a 
function of redshift.

(3) Growth Rate, f  (dδ/d ln a)
- The coherent motion, or flow, of galaxies can be statistically 
estimated from their effect on the clustering measurements of large 
redshift surveys, or through the measurement of redshift space 
distortions.
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which leads to apparent anisotropy even if the adopted cos-
mology is correct (Ballinger Peacock & Heavens 1996). In Li
et al. (2014) we proposed a new method utilizing the red-
shift dependence of AP effect to overcome the RSD problem,
which uses the isotropy of the galaxy density gradient field.
We found that the redshift dependence of the anisotropy
created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
ters.

The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle

c© 2002 RAS, MNRAS 000, 1–8
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Background
Distances are essential to test theoretical models explaining cosmic 
acceleration; 
- ΛCDM
- Dynamical DE
- Non-Einsteinian gravity
- Holographic arguments
- .......
- 우주의 기운 (Choi Sun-Sil etal 2015)

우주의 기운
“energy of universe”
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BOSS: Survey Progress

Final footprint

Completed

BOSS July 2013 (Data Release 11)
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Statistics: Correlation Functions

h�(x)�(x+ r)i
x

⇠(r) =
X

i

ni(r)

n̄dV
� 1

We want to evaluate the 
2-point statistics of the 

over-density field, 𝛅

We call this the two-point 
correlation function

⇠(r) =
DD � 2DR+RR

RR

Algorithmically calculate 
pair counts according to 
Landy-Szalay estimator

dP = n2 [1 + ⇠(r)] dV1dV2

The probability of finding 
a galaxy in 2 volume 

elements separated by r
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Statistics: Correlation Functions

h�(x)�(x+ r)i
x

⇠(r) =
X

i

ni(r)

n̄dV
� 1

We want to evaluate the 
2-point statistics of the 

over-density field, 𝛅

We call this the two-point 
correlation function

⇠(r) =
DD � 2DR+RR

RR

Algorithmically calculate 
pair counts according to 
Landy-Szalay estimator

dP = n2 [1 + ⇠(r)] dV1dV2

The probability of finding 
a galaxy in 2 volume 

elements separated by r

We want to evaluate:
where    is the density 
contrast

6

��(x)�(x + r)⇥

We call this the Two Point 
Correlation Function (2PCF) �i(r) =

ni(r)
n̄.dV

� 1

�

The estimator for this 
statistic is: �(r) =

DD � 2DR + RR

RR

dP = n2[1 + �(r)]dV1dV2This lead to the probability:

Correlation Functions

BOSS - Baryon Acoustic Oscillation
• Imprint of the acoustic phenomena caused by the coupling of the 

photon and gas perturbations in the early-universe (< 0.4 Myr). 
• The physical scale is well-understood, thus can be used as a 

standard ruler.
• It shows up as an enhanced overdensity with a characteristic scale 

of  ~ 150 Mpc. 

(From D. Eisenstein) (www.sdss3.org)
Monday, 20 January 14
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Statistics: Anisotropic 2PCF
From 1D -> 2D

π
σ

r

OBSERVER

Bin pairs of galaxies into distances 
(σ, π) rather than just one 
distance, r.

Apart from the binning scheme 
the statistic is computed in the 
same way....

⇠(r) =
DD � 2DR+RR

RR

If there are no preferred 
directions then the result would 
be perfectly circular iso-clustering 
contours in (σ, π)-space
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Statistics: Anisotropic 2PCF
From 1D -> 2D

π
σ

r

OBSERVER

Bin pairs of galaxies into distances 
(σ, π) rather than just one 
distance, r.

Apart from the binning scheme 
the statistic is computed in the 
same way....

⇠(r) =
DD � 2DR+RR

RR

If there are no preferred 
directions then the result would 
be perfectly circular iso-clustering 
contours in (σ, π)-space

σ
π

r
Bin galaxy pairs in two distances (π,σ) 
instead of the single distance between 
pairs, r.

Apart from the binning this is the same 
as doing the 2PCF.

And if there are no preferred directions 
then the correlation function will give 
perfectly circular contours in (π,σ).

observer 8

Anisotropic 2PCF

�(r) =
DD � 2DR + RR

RR
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Anisotropic 2PCF

3 main contributions to anisotropic clustering:
- Non-linear, Fingers of God (FoG)
- Linear, Large Scale Velocities (Kaiser)
- Incorrect cosmological parameters

- i.e. Alcock-Paczynski effect (AP)
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Anisotropic 2PCF

Red - No RSD
Dashed - Linear
Solid - Linear + FoG

Nonlinear regime 
theoretically 

difficult to model

M. White et al (2011)

The amount of ‘squashing’ 
gives us the growth



Cosmology Group at  
Korea Astronomy and Space Science Institute

Alcock-Paczynski Effect

z1 z2

We measure RA, Dec and Redshift for each galaxy. 
However we must choose a cosmological model to convert 
these positions into a cartesian comoving coordinate 
system.

Even without a standard ruler, we can measure the 
clustering along and perpendicular to the line of sight 
and thus constrain the combination of  DA * H

DA(z)

1/H(z)

Observer
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Alcock-Paczynski Effect

Streaming model

ξ(rp, π) appears anisotropic 
if you assume the wrong 
cosmology; 

constrains the combination:
F(z) ≡ (1+z) DA(z) H(z)/c

However geometric 
distortions can be 
modeled exactly:
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Pure Alcock-Paczynski Measure
Theoretically the  
geometric distortions of the 
AP effect can be modeled 
exactly:

DA, H vary peak positions 
off the BAO ring. 
 

10% variation 
in DA

10% variation 
in H

We want to avoid fitting the full shape of the 
anisotropic correlation function, as it depends on 
unknown systematic and physics, like scale 
dependent bias, etc. 

A cleaner method would be to just measure the 
shape of the BAO ring.

We can do this by looking at many thin wedges in 
this 2D projection, i.e. many ‘directionally 
constrained’ 1-D correlation functions.
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ter, respectively. In the particular case of a flat universe with
constant dark energy EoS, they take the forms of

H(z) = H
0

q
⌦ma�3 + (1� ⌦m)a�3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

Z z

0

dz0

H(z0)
, (2)

where a = 1/(1 + z) is the cosmic scale factor, H
0

is the
present value of Hubble parameter and r(z) is the comoving
distance.

The observed distance between two galaxies r defined
assuming a fiducial or reference cosmological model, and the
observed cosine of the angle the pair makes with respect to
the los µ are given by

r2 = r2|| + r2?; µ =
r||
r

(3)

where r|| is the los separation and r? is the transverse sep-
aration. The estimate of these separations is dependent on
the assumed cosmology model.

We estimate the 2-point correlation function (2PCF)
in reshift-space and in the anisotropic s, µ-decomposition.
The correlation functions are calculated using the “Landy-
Szalay” estimator,

⇠(s, µ) =
DD(s, µ)� 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance s ± �s
and angle µ±�µ. The pair counts are normalised since we
use 20 times as many randoms and data point to reduce shot
noise contributions to the correlation estimation.

We can model the correlation function well using,

⇠µ(s)⇥ s2 = A.s2 +B.s+ Ee�(s�D)

2/C + F, (5)

which is just a quadratic function plus a gaussian (for the
BAO peak). In our work the focus will be on constraining
the scale parameter, D, as a function of the anisotropy angle,
µ.

In Fig.1 we show the 2PCF, ⇠(s) for various µ values. In
all µ-directions the BAO feature is clearly seen. These corre-
lation functions are the average of 16 2LPT mocks CMASS
samples in the redshift range 0.43 < z < 0.7.

In Fig.2 we show the values of D obtained from fitting
the model of Eq5 to the measured ⇠ curves of Fig.1. The
fitting was done using a 20,000 chain mcmc. The fitting was
done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination of
the assumed measurement errors and the tension in from the
model with the data. The straight line plus gaussian model
may be too inflexible to obtains the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

r(✓) =
abp

(a cos ✓)2 + (b sin ✓)2
(6)

where a and b are the semi-major and semi-minor axes re-
spectively.

If we now fit the above elliptic equation to the data
points with errors as see in Fig.2 we can obtain constraints
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Figure 1. We plot ⇠(s) for various values of µ. The black squares

from top to bottom correspond to µ=0.9167, 0.7500, 0.5833,

0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

106

107

108

109

110

µ

D
(

µ
)
 
[
M
p
c
/
h
]

Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.

on the values of a and b which represent our scaling param-
eter along the line of sight, D// and across the line of sight,
D?. The 1- and 2-sigma constraints are represented in Fig.3.

3 BAO PEAK STRUCTURE SENSITIVITIES

The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
we consider finger-of-god distortions, non-linear growth and,
variations in the overall shape induced by unknown h and
of course the AP e↵ect. We wish to isolate the latter ef-
fect since it encodes distance information which in turn can
inform is of the expansion history.

c� 0000 RAS, MNRAS 000, 000–000

μ=0

μ=0.5
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A simple function to 
approximate the shape of 
the correlation function
We use a quadratic plus a 
gaussian, fitted over the 
range 80<r<180 Mpc

We care only about 
locating the BAO peak 
position. The centre of the 
gaussian is controlled by D.

μ=1

Anisotropic BAO Peaks
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μ=0

Simply we can fit an elliptic 
function to the obtained 
D(μ) and get a semi-major 
and minor distance defining 
an ellipse. 
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fect since it encodes distance information which in turn can
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From this we constrain the 
two distances, D// along the line 
of sight and D⊥ across the line 
of sight.
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0

is the
present value of Hubble parameter and r(z) is the comoving
distance.

The observed distance between two galaxies r defined
assuming a fiducial or reference cosmological model, and the
observed cosine of the angle the pair makes with respect to
the los µ are given by

r2 = r2|| + r2?; µ =
r||
r

(3)

where r|| is the los separation and r? is the transverse sep-
aration. The estimate of these separations is dependent on
the assumed cosmology model.

We estimate the 2-point correlation function (2PCF)
in reshift-space and in the anisotropic s, µ-decomposition.
The correlation functions are calculated using the “Landy-
Szalay” estimator,

⇠(s, µ) =
DD(s, µ)� 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance s ± �s
and angle µ±�µ. The pair counts are normalised since we
use 20 times as many randoms and data point to reduce shot
noise contributions to the correlation estimation.

We can model the correlation function well using,

⇠µ(s)⇥ s2 = A.s2 +B.s+ Ee�(s�D)

2/C + F, (5)

which is just a quadratic function plus a gaussian (for the
BAO peak). In our work the focus will be on constraining
the scale parameter, D, as a function of the anisotropy angle,
µ.

In Fig.1 we show the 2PCF, ⇠(s) for various µ values. In
all µ-directions the BAO feature is clearly seen. These corre-
lation functions are the average of 16 2LPT mocks CMASS
samples in the redshift range 0.43 < z < 0.7.

In Fig.2 we show the values of D obtained from fitting
the model of Eq5 to the measured ⇠ curves of Fig.1. The
fitting was done using a 20,000 chain mcmc. The fitting was
done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination of
the assumed measurement errors and the tension in from the
model with the data. The straight line plus gaussian model
may be too inflexible to obtains the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

r(✓) =
abp

(a cos ✓)2 + (b sin ✓)2
(6)

where a and b are the semi-major and semi-minor axes re-
spectively.

If we now fit the above elliptic equation to the data
points with errors as see in Fig.2 we can obtain constraints
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from an mcmc analysis.

on the values of a and b which represent our scaling param-
eter along the line of sight, D// and across the line of sight,
D?. The 1- and 2-sigma constraints are represented in Fig.3.

3 BAO PEAK STRUCTURE SENSITIVITIES

The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
we consider finger-of-god distortions, non-linear growth and,
variations in the overall shape induced by unknown h and
of course the AP e↵ect. We wish to isolate the latter ef-
fect since it encodes distance information which in turn can
inform is of the expansion history.
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done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination
of the assumed measurement errors and the tension in the
model with the data. The straight line plus gaussian model
may be too inflexible to obtaint the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

D(µ) =
D?.D||q

(D?.µ)2 +D2

||(1� µ2)
(6)

where D? and D|| are the two distance measures that
uniquely define the ellipse. In our work we will directly re-
lated these distance quantities to geometrical cosmological
quantities, such that D?.

The D? and D||will be measured in the fiducial model
and compared to those measured from observation. Thus
allowing constraints on two geometrical cosmological quan-
tities,

H�1

obs

= H�1

fid

D||,fid

D||,obs
,

D
A,obs

= D
A,fid

D?,fid

D?,obs

. (7)

However for the above relations to be considered un-
biased estimators, the extracted distances from the fiducial
model must be free from systematic uncertainties associ-
ated with our incomplete knowledge of galaxy clustering.
The systematics will be investigated in the next section.

3 MEASURING THE BAO IN LOW
RESOLUTION EXPERIMENT

The initial matter-energy fluctuations cause to generate
sources for baryon acoustic wave propagated in the photon-
electron-baryon plasma of the early universe. This acous-
tic wave travels, before it stops at the epoch of recombina-
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model of the 2-dimensional 2PCF.

tion. The initial density peak of excess of matter observed
at last scattering surface remains at the galaxy clustering
at late epoch. This distance provides a standard ruler to
determine both transverse and radial distances. In practice,
there are nuisance systematic uncertainties which prevent us
from directly accessing to primeval BAO signature. Those
systematics are classified into uncertainties due to the bi-
ased galaxy clustering to dark matter fluctuations, the non–
perturbative e↵ect from random velocities, and the unknown
theoretical model of dark energy at late time. The methodol-
ogy has been extensively developed to probe primeval BAO
structure after marginalising all those nuisance parameters.
The measured distances through simultaneous determina-
tion of all others are proved to be useful for diverse classes
of theoretical models, but the determination is still model–
dependent. We are interested in the opposite direction in
which we remove those systematics from our analysis, in-
stead of adding it to the analysis.

3.1 Fiducial model

The fiducial distances of D
A

and H�1 are provided by the-
oretical RSD modelling using the perturbation theory. In
computing the RSD power spectrum, we need to properly
take into account the e↵ect of nonlinear gravitational evo-
lution for the auto- and cross-power spectra P

XY

(k). Since
the standard perturbation theory is known to produce ill-
behaved expansion leading to the bad UV behavior, a consis-
tent calculation of the correlation function should be made
with an improved perturbation theory that includes appro-
priate UV regularization. Here, we apply the resummed per-
turbation theory called RegPT (Taruya et al. 2012), and fol-
lowing the prescription described in (Taruya, Nishimichi &
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done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination
of the assumed measurement errors and the tension in the
model with the data. The straight line plus gaussian model
may be too inflexible to obtaint the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,
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where D? and D|| are the two distance measures that
uniquely define the ellipse. In our work we will directly re-
lated these distance quantities to geometrical cosmological
quantities, such that D?.

The D? and D||will be measured in the fiducial model
and compared to those measured from observation. Thus
allowing constraints on two geometrical cosmological quan-
tities,
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obs
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,
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However for the above relations to be considered un-
biased estimators, the extracted distances from the fiducial
model must be free from systematic uncertainties associ-
ated with our incomplete knowledge of galaxy clustering.
The systematics will be investigated in the next section.

3 MEASURING THE BAO IN LOW
RESOLUTION EXPERIMENT

The initial matter-energy fluctuations cause to generate
sources for baryon acoustic wave propagated in the photon-
electron-baryon plasma of the early universe. This acous-
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tion. The initial density peak of excess of matter observed
at last scattering surface remains at the galaxy clustering
at late epoch. This distance provides a standard ruler to
determine both transverse and radial distances. In practice,
there are nuisance systematic uncertainties which prevent us
from directly accessing to primeval BAO signature. Those
systematics are classified into uncertainties due to the bi-
ased galaxy clustering to dark matter fluctuations, the non–
perturbative e↵ect from random velocities, and the unknown
theoretical model of dark energy at late time. The methodol-
ogy has been extensively developed to probe primeval BAO
structure after marginalising all those nuisance parameters.
The measured distances through simultaneous determina-
tion of all others are proved to be useful for diverse classes
of theoretical models, but the determination is still model–
dependent. We are interested in the opposite direction in
which we remove those systematics from our analysis, in-
stead of adding it to the analysis.

3.1 Fiducial model

The fiducial distances of D
A

and H�1 are provided by the-
oretical RSD modelling using the perturbation theory. In
computing the RSD power spectrum, we need to properly
take into account the e↵ect of nonlinear gravitational evo-
lution for the auto- and cross-power spectra P

XY

(k). Since
the standard perturbation theory is known to produce ill-
behaved expansion leading to the bad UV behavior, a consis-
tent calculation of the correlation function should be made
with an improved perturbation theory that includes appro-
priate UV regularization. Here, we apply the resummed per-
turbation theory called RegPT (Taruya et al. 2012), and fol-
lowing the prescription described in (Taruya, Nishimichi &
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ter, respectively. In the particular case of a flat universe with
constant dark energy EoS, they take the forms of

H(z) = H
0

q
⌦ma�3 + (1� ⌦m)a�3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

Z z

0

dz0

H(z0)
, (2)

where a = 1/(1 + z) is the cosmic scale factor, H
0

is the
present value of Hubble parameter and r(z) is the comoving
distance.

The observed distance between two galaxies r defined
assuming a fiducial or reference cosmological model, and the
observed cosine of the angle the pair makes with respect to
the los µ are given by

r2 = r2|| + r2?; µ =
r||
r

(3)

where r|| is the los separation and r? is the transverse sep-
aration. The estimate of these separations is dependent on
the assumed cosmology model.

We estimate the 2-point correlation function (2PCF)
in reshift-space and in the anisotropic s, µ-decomposition.
The correlation functions are calculated using the “Landy-
Szalay” estimator,

⇠(s, µ) =
DD(s, µ)� 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance s ± �s
and angle µ±�µ. The pair counts are normalised since we
use 20 times as many randoms and data point to reduce shot
noise contributions to the correlation estimation.

We can model the correlation function well using,

⇠µ(s)⇥ s2 = A.s2 +B.s+ Ee�(s�D)

2/C + F, (5)

which is just a quadratic function plus a gaussian (for the
BAO peak). In our work the focus will be on constraining
the scale parameter, D, as a function of the anisotropy angle,
µ.

In Fig.1 we show the 2PCF, ⇠(s) for various µ values. In
all µ-directions the BAO feature is clearly seen. These corre-
lation functions are the average of 16 2LPT mocks CMASS
samples in the redshift range 0.43 < z < 0.7.

In Fig.2 we show the values of D obtained from fitting
the model of Eq5 to the measured ⇠ curves of Fig.1. The
fitting was done using a 20,000 chain mcmc. The fitting was
done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination of
the assumed measurement errors and the tension in from the
model with the data. The straight line plus gaussian model
may be too inflexible to obtains the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

r(✓) =
abp

(a cos ✓)2 + (b sin ✓)2
(6)

where a and b are the semi-major and semi-minor axes re-
spectively.

If we now fit the above elliptic equation to the data
points with errors as see in Fig.2 we can obtain constraints
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on the values of a and b which represent our scaling param-
eter along the line of sight, D// and across the line of sight,
D?. The 1- and 2-sigma constraints are represented in Fig.3.

3 BAO PEAK STRUCTURE SENSITIVITIES

The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
we consider finger-of-god distortions, non-linear growth and,
variations in the overall shape induced by unknown h and
of course the AP e↵ect. We wish to isolate the latter ef-
fect since it encodes distance information which in turn can
inform is of the expansion history.
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3.1 Velocities

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In Fig.5 we show the derived dis-
tance measurements using models with various �v choices,
of 0, 2, 4, 6, 8 Mpc/h. We find no significant trend or devi-
ation with these values of �v with either D// or D? and all
measurements lie within a 1% error margin.

3.2 Non-linear

Comparing linear theory prediction with RegPT ref ref
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3.3 Hubble value

In Fig.6 we show the e↵ect of changing the hubble constant
in the primordial spectra on the derived distance measures.
However we do not include the AP distortion in this theo-
retical template. We find that variations of ±6Mpc in h do
not alter the obtained values of D// and D?.

3.4 Bias

In Fig.7 we show the e↵ect of changing the bias factor of
the theoretical 2pcf on the derived distance measures. Since
the bias a linear we should not expect a shift in the BAO
peak position however we investigate this change in the case
that our minimal model can still fit the peak position with-
out introducing any systematic variation due to inaccurate
fitting. We find that values of b = 1.2, 1.4,1.6, 1.8 all give
consistent values of D// and D?.

3.5 Alcock-Paczynski

The AP e↵ect is now included ....
In Fig.8 we
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Figure 4. Left panel: We show equi-clustering contours for 3 bias models with b = 1.5, 2.0, 2.5 represented by dotted, solid and dash

contours respectively. Right panel: Same as the left panel but now we plot 3 di↵erent FoG models with �
v

= 2, 8, 11 Mpc, represented

by solid, dash and dotted contours.

In a simple case we can assume that this FoG is given
as a factorized form, and multiplied as :

P̃ (~k) = DP

FoG

(~k)P̃ lin(~k) . (12)

The DP

FoG

(~k) is given by the Gaussian form as,

DP

FoG

(~k) = exp
⇥
� (kµ�

v

)2
⇤
, (13)

where �
v

denotes the dispersion of the one-point velocity
PDF along one-dimension. When (kµ�

v

)2 ⌧ 1, the leading
order term of Eq. (12) is dominant over all other higher
orders, and the estimated errors are immune from the exact
functional form of Eq. (12).

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In the table below we show the
derived distance measurements using models with various
�
v

choices, of 2, 5, 8, 11, 15 Mpc. The theoretical ⇠(�,⇡)
is presented in the right panel of Fig. 4. It is di�cult to
find the deviation from the figure. However, the measured
H�1 is possibly biased by a couple of percentage level. When
we consider the low resolution map such as BOSS, it would
not be much influential. But when we fit the high resolution
experiment such as DESI, we have to marginalise FoG e↵ect.
For the measured D

A

, it is again immune from the FoG
e↵ect. The detailed results are presented below.

�
v

(Mpc) D
A

(Mpc) H�1 (Mpc)
2 1392.47 ( -0.19 %) 3253.96 ( 0.59%)
5 (fid) 1395.18 ( 0.00 %) 3234.76 ( 0.00 %)
8 1395.18 ( 0.00 %) 3234.76 ( 0.00 %)
11 1397.99 ( 0.20 %) 3166.40 ( -2.11%)
15 1397.99 ( 0.20 %) 3077.53 ( -4.86%)

Note that the transverse distance is measured precisely
regardless of FoG e↵ect. In terms of D

A

, BAO remains as a
standard ruler independent of random velocity e↵ect. How-
ever, the determination of radial distance becomes uncertain
by FoG. In the weak contamination limit at �

v

. 10Mpc,
the systematic uncertainty is smaller than a couple of per-
cent. When we consider low resolution map such as BOSS
catalog, BAO remains as a standard ruler for the radial
distance as well. But in the strong contamination limit at

�
v

& 10Mpc, the determination of H�1 is not trustable. We
will discuss this further in the following section.

3.4 Standard ruler against variation of
cosmological model

The primeval matter-energy fluctuations are assumed to be
known by CMB experiments. We test whether it is su�cient
for determining distances through observed BAO peaks. In
the context of standard cosmology, the shape of spectra is
determined before the last scattering surface, and in linear
theory, it evolves coherently through all scales. The history
of structure formation evolution is divided into two regimes;
epochs before matter–radiation equality and a later epoch of
coherent evolution of unknown e↵ect on structure formation
from new physics.

True cosmological model can be di↵erent from the fidu-
cial model, but it satisfies with the given CMB prior. If we
lives in ⇤CDM universe, but the fiducial cosmology is not
consistent with the true cosmology. There is only one de-
grees of freedom to vary with the imposed CMB priors. Here
we vary H

0

to remain !
b

and !
m

unchanged. Two di↵erent
cosmologies with the same BAO structure are tested in the
table below. We test H

0

= 61 km/s/Mpc and 73 km/s/Mpc
cases. If those cases are considered as the fiducial model,
we would not find any di↵erence in the measured distances,
within 0.2%. The BAO indeed remains as a standard ruler
against variation of cosmological model, as far as those stem
from the same primeval spectra at the last scattering sur-
face. It suggests that BAO will probe the true distances
regardless of the fiducial models used.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.
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Figure 3. We compare ⇠
s

(�,⇡) calculated using linear theory

(solid contours) and non–linear theoretical model (dash contours).

The levels of contours are given by [0.1, 0.02, 0.005, 0.001,�0.003].

level which are summarised in the tables below. This shift
nessecarily requires us to model the clustering using non-
linear templates even at large scales near the BAO peak
position. However, BAO ring is observed relatively at large
scales about 150Mpc in which the perturbative theory pre-
dicts the dominant higher order non–linear corrections in
precision. BAO remains as a standard ruler as far as the
non–linear corrections are predictable.

Template D|| D?
linear 152.12 153.33
RegPT 153.33 154.54

The contamination due to the randomness of velocity is
not formulated in the above perturbation theory. This e↵ect
dubbed as FoG (hereafter Finger of God) is phenomenolog-
ically given by Gaussian approximation as,

P̃ (k, µ) =
⇥
P
��

(k) + 2µ2P
�⇥

(k) + µ4P
⇥⇥

(k)
⇤
GFoG(kµ�

v

) , (8)

where GFoG is given by,

GFoG = exp
⇥
�(kµ�

v

)2
⇤
. (9)

Here �
v

denotes the velocity dispersion. Because we are
mainly interested in clustering about the BAO ring which is
most contributed from quasi linear scale spectra, the lead-
ing order of GFoG function is dominant over all other higher
order contributions. Thus the detailed functional form of
GFoG is not much important as far as the �

v

is assumed to
be undetermined. The fiducial value of �

v

is given by the
linear velocity dispersion of �

v

= 5Mpc. Once the power
spectrum has been computed, it is straightforward to com-
pute the correlation function. The redshift-space correlation
function ⇠

s

(�, µ) is generally expanded as

⇠
s

(�,⇡) =

Z
d3k

(2⇡)3
P̃ (k, µ)eik·s. (10)

Here we also consider the bias due to galaxy clustering. The
matter density field is replaced with the galaxy density field
by coherent bias factor b = 2. The systematic uncertainty
due to galaxy bias is examined in the next subsection.

The variation of measured D
A

and H�1 is presented

in the following subsections with respect to changes of all
nuisance systematics. The D? and Dk defined in Eq. 6 are
measured to be 154.5Mpc and 153.3Mpc for the fiducial
cosmology. Distances of D

A

and H�1 are calculated from
the fractional di↵erence in measured D? and Dk for each
systematic uncertainty case. The fiducial D

A

and H�1 at
z = 0.57 are 1395.2Mpc and 3234.8Mpc.

3.2 Galaxy bias

Although the theoretical model of galaxy clustering to dark
matter distribution is unknown, galaxy bias can be described
using the following phenomenological function which is given
by,

b(k) = b
0

1 +A
2

k2

1 +A
1

k
(11)

where b
0

denotes the coherent galaxy bias, and A
n

denote
the scale dependent bias parameters. The shape of ⇠(s, µ)
changes with the variation of A

n

, but there is little e↵ect
on outer contours at s > 100Mpc. The determination of D
indicating the location of BAO peaks is immune from the
scale dependent bias systematics. Therefore we mainly focus
on the e↵ect by coherent bias variation in this subsection.
The observed location of BAO peaks varies with di↵erent
b
0

, but we observe that the 2D BAO ring remains invariant.
In the table below we show the e↵ect of changing the linear
bias factor on the derived distance measures. Since the bias
only alters the amplitude of the clustering signal we should
not expect a shift in the BAO peak position. However we
investigate the change in bias in the case that our minimal
model can still fit the peak position without introducing any
systematic variation due to inaccurate fitting. We find that
values of b

0

= 1.5, 2.0, 2.5 all give consistent values of D?
and Dk and induce subpercent level shifts in D

A

and H�1.
In the left panel of Fig. 4, we present the ⇠(�,⇡) with

variation of bias. The solid, dash and dotted contours rep-
resent the ⇠(�,⇡) with b

0

= 1.5, 2.0 and 2.5 respectively. No
significant deviation of BAO ring is observed with variation
of coherent galaxy bias b. We present it more quantitatively
in the table below. The measured D

A

and H�1 does not
deviate more than 0.8% with respect to the variation of b

0

.
The fractional deviation is presented in the bracket. There-
fore we are able to measure distances through BAO ring
despite the unknown galaxy bias.

bias D
A

(Mpc) H�1(Mpc)
1.5 1395.18 ( 0.00 %) 3241.28 ( 0.20%)
2.0 (fid) 1395.18 ( 0.00 %) 3234.76 ( 0.00 %)
2.5 1384.29 ( -0.78%) 3234.76 ( 0.00%)

3.3 Non–perturbative e↵ect from randomness of
peculiar velocity

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.
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Figure 4. Left panel: We show equi-clustering contours for 3 bias models with b = 1.5, 2.0, 2.5 represented by dotted, solid and dash

contours respectively. Right panel: Same as the left panel but now we plot 3 di↵erent FoG models with �
v

= 2, 8, 11 Mpc, represented

by solid, dash and dotted contours.

In a simple case we can assume that this FoG is given
as a factorized form, and multiplied as :

P̃ (~k) = DP

FoG

(~k)P̃ lin(~k) . (12)

The DP

FoG

(~k) is given by the Gaussian form as,

DP

FoG

(~k) = exp
⇥
� (kµ�

v

)2
⇤
, (13)

where �
v

denotes the dispersion of the one-point velocity
PDF along one-dimension. When (kµ�

v

)2 ⌧ 1, the leading
order term of Eq. (12) is dominant over all other higher
orders, and the estimated errors are immune from the exact
functional form of Eq. (12).

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In the table below we show the
derived distance measurements using models with various
�
v

choices, of 2, 5, 8, 11, 15 Mpc. The theoretical ⇠(�,⇡)
is presented in the right panel of Fig. 4. It is di�cult to
find the deviation from the figure. However, the measured
H�1 is possibly biased by a couple of percentage level. When
we consider the low resolution map such as BOSS, it would
not be much influential. But when we fit the high resolution
experiment such as DESI, we have to marginalise FoG e↵ect.
For the measured D

A

, it is again immune from the FoG
e↵ect. The detailed results are presented below.

�
v

(Mpc) D
A

(Mpc) H�1 (Mpc)
2 1392.47 ( -0.19 %) 3253.96 ( 0.59%)
5 (fid) 1395.18 ( 0.00 %) 3234.76 ( 0.00 %)
8 1395.18 ( 0.00 %) 3234.76 ( 0.00 %)
11 1397.99 ( 0.20 %) 3166.40 ( -2.11%)
15 1397.99 ( 0.20 %) 3077.53 ( -4.86%)

Note that the transverse distance is measured precisely
regardless of FoG e↵ect. In terms of D

A

, BAO remains as a
standard ruler independent of random velocity e↵ect. How-
ever, the determination of radial distance becomes uncertain
by FoG. In the weak contamination limit at �

v

. 10Mpc,
the systematic uncertainty is smaller than a couple of per-
cent. When we consider low resolution map such as BOSS
catalog, BAO remains as a standard ruler for the radial
distance as well. But in the strong contamination limit at

�
v

& 10Mpc, the determination of H�1 is not trustable. We
will discuss this further in the following section.

3.4 Standard ruler against variation of
cosmological model

The primeval matter-energy fluctuations are assumed to be
known by CMB experiments. We test whether it is su�cient
for determining distances through observed BAO peaks. In
the context of standard cosmology, the shape of spectra is
determined before the last scattering surface, and in linear
theory, it evolves coherently through all scales. The history
of structure formation evolution is divided into two regimes;
epochs before matter–radiation equality and a later epoch of
coherent evolution of unknown e↵ect on structure formation
from new physics.

True cosmological model can be di↵erent from the fidu-
cial model, but it satisfies with the given CMB prior. If we
lives in ⇤CDM universe, but the fiducial cosmology is not
consistent with the true cosmology. There is only one de-
grees of freedom to vary with the imposed CMB priors. Here
we vary H

0

to remain !
b

and !
m

unchanged. Two di↵erent
cosmologies with the same BAO structure are tested in the
table below. We test H

0

= 61 km/s/Mpc and 73 km/s/Mpc
cases. If those cases are considered as the fiducial model,
we would not find any di↵erence in the measured distances,
within 0.2%. The BAO indeed remains as a standard ruler
against variation of cosmological model, as far as those stem
from the same primeval spectra at the last scattering sur-
face. It suggests that BAO will probe the true distances
regardless of the fiducial models used.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.
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Figure 5. Equal clustering contours for three values of ⌦

⇤

. The

values ⌦

⇤

= 0.62, 0.68, 0.73 correspond to the dotted, solid and

dashed lines respectively.

Figure 6. The D(µ) curve for 4 values of �
v

= 2, 8, 11, 14 Mpc.

The dashed black lines are for 1 and 4% increase in H�1

.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i

µi

0.08 -0.18 -0.004 -0.15 -0.004 -0.21 -0.004
0.25 0.21 -0.003 0.07 -0.002 0.10 -0.002
0.42 -0.17 0.002 -0.10 0.002 -0.09 0.002
0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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Figure 5. Equal clustering contours for three values of ⌦

⇤

. The

values ⌦
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Figure 6. The D(µ) curve for 4 values of �
v

= 2, 8, 11, 14 Mpc.

The dashed black lines are for 1 and 4% increase in H�1

.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i

µi

0.08 -0.18 -0.004 -0.15 -0.004 -0.21 -0.004
0.25 0.21 -0.003 0.07 -0.002 0.10 -0.002
0.42 -0.17 0.002 -0.10 0.002 -0.09 0.002
0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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Figure 5. Equal clustering contours for three values of ⌦

⇤

. The

values ⌦
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Figure 6. The D(µ) curve for 4 values of �
v

= 2, 8, 11, 14 Mpc.

The dashed black lines are for 1 and 4% increase in H�1

.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i

µi

0.08 -0.18 -0.004 -0.15 -0.004 -0.21 -0.004
0.25 0.21 -0.003 0.07 -0.002 0.10 -0.002
0.42 -0.17 0.002 -0.10 0.002 -0.09 0.002
0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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Figure 5. Equal clustering contours for three values of ⌦

⇤

. The

values ⌦
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= 0.62, 0.68, 0.73 correspond to the dotted, solid and

dashed lines respectively.

Figure 6. The D(µ) curve for 4 values of �
v

= 2, 8, 11, 14 Mpc.

The dashed black lines are for 1 and 4% increase in H�1

.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i

µi

0.08 -0.18 -0.004 -0.15 -0.004 -0.21 -0.004
0.25 0.21 -0.003 0.07 -0.002 0.10 -0.002
0.42 -0.17 0.002 -0.10 0.002 -0.09 0.002
0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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Figure 5. Equal clustering contours for three values of ⌦
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Figure 6. The D(µ) curve for 4 values of �
v

= 2, 8, 11, 14 Mpc.

The dashed black lines are for 1 and 4% increase in H�1

.

⌦
⇤

D
A

(% fiducial) H�1 (% fiducial)
0.62 1493.08 ( -0.19%) 3396.97 ( 0.20%)
0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i

µi

0.08 -0.18 -0.004 -0.15 -0.004 -0.21 -0.004
0.25 0.21 -0.003 0.07 -0.002 0.10 -0.002
0.42 -0.17 0.002 -0.10 0.002 -0.09 0.002
0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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0.68 1395.18 ( 0.00 %) 3234.76 ( 0.00%)
0.73 1395.18 ( 0.00 %) 3234.76 ( 0.00%)

In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
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v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.
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0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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In Fig.5 we show the clustering contours for ⌦
⇤

= 0.62,
0.73. We see that variations in ⌦

⇤

lead to shifts in the con-
tours but as we determined and presented in the table above,
the BAO ring shape is not a↵ected.

4 MEASURING THE BAO IN HIGH
RESOLUTION EXPERIMENT

In Fig.6 we show the measured BAO peak position as a
function of µ for several values of �

v

. As we see, increasing
�
v

increases the BAO peak position near the los direction.
Unfortunately, this behaviour can also be mimicked by a
variation in H�1, which may hamper our attempts to mea-
sure H�1 alone. We see that a moderate value of �

v

= 8
can be confused with a 1% increase in H�1. This would

suggest that we may only be able to make constraints of
the combined quantity �

v

H�1. However, as we see in figure,
there is a crossing point in the D(µ) curves and that as �

v

is increase there is also a systematic decrease in D near the
perpendicular direct, which will influence the measurement
of D

A

. Thus if precise enough measurements can be made
there seems to be a possibility to model the FoG e↵ect on
the D(µ) curve and to correct the derived quantities D

A

and
H�1.

We now proceed to model the FoG e↵ect on the D(µ)
curve by fitting the function,

D(µ) = Dfid(µ) + ↵(µ) + �(µ)�2

v

, (14)

at each µ bin and determining the values of the fitting
parameters ↵ and �. We also check the cosmological
dependence by considering ⌦

⇤

= 0.62, 0.68, 0.73.

⌦⇤ 0.62 0.68 0.73
↵i �i ↵i �i ↵i �i
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0.58 -0.51 0.009 -0.47 0.010 -0.42 0.009
0.75 -0.77 0.018 -0.68 0.018 -0.65 0.018
0.92 -1.07 0.027 -0.88 0.026 -0.89 0.027

Using the fitting formula of Eq.14 and the parameters
in the above table, we proceed to check whether the input
parameters can be recovered. Taking the case of a model
with �

v

= 11Mpc, b=2.0 and in the fiducial cosmology
which corresponds to ⌦

⇤

= 0.68 we recover the cosmolog-
ical observables D

A

and H�1 with and without correcting
for the FoG e↵ect. When we do not correct for FoG we ob-
tain D

A

= 1397.91 and H�1 = 3172.44 which correspond to
a 0.20% and -1.93% shift respectively. While correcting for
the FoG we obtain D

A

= 1394.96 ( -0.02% deviation) and
H�1 = 3215.85 ( -0.58% deviation), while recovering a value
of �

v

= 10.13Mpc (-8% deviation from input value).
As the table above suggests the cosmological depen-

dence on the fitting function is negligible. We can check this
by assuming an incorrect cosmology for the fitting func-
tion and determining the impact on our recovered values
of D

A

and H�1 in the fiducial model. If we take the fit-
ting functions for a cosmology with ⌦

⇤

= 0.73 we obtain
D

A

= 1394.96 ( -0.02%) and H�1 = 3215.85 ( -0.58%) and
�
v

= 9.72Mpc (-12% deviation from input value).
As we have shown, even in the case of high �

v

, we can
recover the input cosmological observables D

A

and H�1 to
better than percent level accuracy while also constraining �

v

itself, albeit to a lesser accuracy of 10%. In the next section
we will apply this methodology to simulated data and in
both a low resolution limit similar to currently available data
and a high resolution, precision, limit comparable to future
data like DESI and LSST.

5 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

5.1 Simulations and covariance matrices

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
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catalogs1 created by Manera et al. (2012), which are de-
signed to investigate the various systematics in the galaxy
sample from Data Release 11 (DR11) of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) (Schlegel et al. 2009;
Eisenstein et al. 2011; Anderson et al. 2012), referred to
as the “CMASS” galaxy sample. In constructing the mock
galaxy catalogs, (Manera et al. 2012) utilized second-order
Lagrangian perturbation theory (2LPT) for the galaxy clus-
tering driven by gravity, which enables the creation of a
mock catalog much faster than running an N -body simula-
tion. The mocks catalogs constitute 600 density field realiza-
tions which span the redshift range of the observed galaxies
in our sample i.e. 0.43 < z < 0.7. Each catalog contains
⇠ 7⇥ 105 galaxies, 90% of which are central galaxies resid-
ing in dark matter halos of ⇠ 1013h�1M�.

5.2 Simulation constraints: D
A

, H�1

We now proceed to apply the methodology we have pre-
sented in the previous sections to simulated data.

The correlation functions are calculated from the simu-
lation data using the “Landy-Szalay” estimator (?),

⇠(~r) =
DD(~r)� 2DR(~r) +RR(~r)

RR(~r)
, (15)

where DD(~r) is the number of data–data pairs, DR the
number of data-random pairs, and RR is the number of
random–random pairs, all separated by a displacement vec-
tor ~r. For this anisotropic analysis we decompose the vector
~r into a distance s and the cosine of the angle bwteen the los
and the pair vdctor µ = cos ✓. Then we proceed to measure
⇠(s, µ) from s = 80 ! 180 Mpc in 15 bins of width w ⇠ 7
Mpc and µ = 0 ! 1 Mpc in 6 linearly spaced bins.

Firstly we fit the case without RSD. If we do not cor-
rect for the RSD e↵ect we know from previous tests that
our results on H�1 will be necessarily biased. We find D|| =
155.15±0.51 Mpc and D? = 154.04±0.30 Mpc that results
in the following constraints; D

A

= 1399.71+2.71

�2.74

(0.32�0.20

+0.19

%)
and H�1 = 3196.79+10.57

�10.44

(�1.17 ± 0.32%), where the per-
centage denotes the deviation from fiducial model.

5.3 Simulation constraints: D
A

, H�1,�
v

When dealing with a higher resolution experiment and the
errors on the BAO peak position are small compare to a typ-
ical RSD induced BAO shift we must model and marginalise
the quantity �

v

.
D|| = 154.92+0.51

�2.29

Mpc and D? = 153.90+0.25

�0.25

Mpc with �
v

= 6.8+2.0

�6.8

Mpc, which leads to
D

A

= 1401.01+2.29

�2.26

(0.42�0.17

+0.16

%) and H�1 =
3201.66+47.94

�10.39

(�1.02+1.48

�0.32

%).
As we can see, once we marginalise over �

v

we weaken
the constraints on H�1, however our recovered central value
is slightly less biased. Also our estimated value and con-
stant on D

A

appears almost unchanged. Thus even when
marginalising over �

v

we do not lost constraining power on
this parameter.

In the left plot of Fig. 7 we see the e↵ect of including �
v

1

These mock catalogs are available from:

http://marcmanera.net/mocks/index.html

on the 1-dimentional likelihood of D||. When not including
FoG correction the likelihood is close to a gaussian distri-
bution peaked at the best fit point, however when �

v

is
included we see a skewed behaviour towards lower values of
D||.

The right hand plot of Fig. 7 shows the 1-dimensional
liklihood of the FoG parameter, �

v

. We see that it favours a
value close to 6 Mpc although it allows lower values tending
to zero.

5.4 DR11 constraints: D
A

, H�1

We now proceed to to apply our methodology to the obser-
vational sample of BOSS galaxies in DR11. We obtain D

A

=
1274.94+15.29

�14.93

(�8.62+1.10

�1.07

%) and H�1 = 3026.60+56.10

�54.10

(�6.44%).

5.5 DR11 constraints: D
A

, H�1,�
v

Given the large errors on the measured peak position, we
should not expect that fitting the FoG e↵ect will lead to a
more accurate result. We obtain....

6 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to galaxy bias and unknown shape
change in the primordial spectra. However non-linearities in
the density field and non-linear FoG distortions contaminate
the estimated BAO scales and thus the recovered values of
D

A

and H�1. Fortunately, the contamination of the FoG
e↵ect is not perfectly degenerate with the geometrical dis-
tortions and thus in future sub-percent level precision exper-
iments the two e↵ects can be disentangled. Thus we hope in
that future measurements will allow us to focus on measure-
ments of the AP e↵ect and to infer cosmological parameters
pertaining to the expansion history.

We tested this methodology using mock galaxy catalogs
and found that we can recover the input cosmology....
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5.2 Simulation constraints: D
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We now proceed to apply the methodology we have pre-
sented in the previous sections to simulated data.

The correlation functions are calculated from the simu-
lation data using the “Landy-Szalay” estimator (?),

⇠(~r) =
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where DD(~r) is the number of data–data pairs, DR the
number of data-random pairs, and RR is the number of
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5.3 Simulation constraints: D
A

, H�1,�
v

When dealing with a higher resolution experiment and the
errors on the BAO peak position are small compare to a typ-
ical RSD induced BAO shift we must model and marginalise
the quantity �

v

.
D|| = 154.92+0.51

�2.29

Mpc and D? = 153.90+0.25

�0.25

Mpc with �
v

= 6.8+2.0

�6.8

Mpc, which leads to
D

A

= 1401.01+2.29

�2.26

(0.42�0.17

+0.16

%) and H�1 =
3201.66+47.94

�10.39

(�1.02+1.48

�0.32

%).
As we can see, once we marginalise over �

v

we weaken
the constraints on H�1, however our recovered central value
is slightly less biased. Also our estimated value and con-
stant on D

A

appears almost unchanged. Thus even when
marginalising over �

v

we do not lost constraining power on
this parameter.

In the left plot of Fig. 7 we see the e↵ect of including �
v

1

These mock catalogs are available from:

http://marcmanera.net/mocks/index.html

on the 1-dimentional likelihood of D||. When not including
FoG correction the likelihood is close to a gaussian distri-
bution peaked at the best fit point, however when �

v

is
included we see a skewed behaviour towards lower values of
D||.

The right hand plot of Fig. 7 shows the 1-dimensional
liklihood of the FoG parameter, �

v

. We see that it favours a
value close to 6 Mpc although it allows lower values tending
to zero.

5.4 DR11 constraints: D
A

, H�1

We now proceed to to apply our methodology to the obser-
vational sample of BOSS galaxies in DR11. We obtain D

A

=
1274.94+15.29

�14.93

(�8.62+1.10

�1.07

%) and H�1 = 3026.60+56.10

�54.10

(�6.44%).

5.5 DR11 constraints: D
A

, H�1,�
v

Given the large errors on the measured peak position, we
should not expect that fitting the FoG e↵ect will lead to a
more accurate result. We obtain....

6 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to galaxy bias and unknown shape
change in the primordial spectra. However non-linearities in
the density field and non-linear FoG distortions contaminate
the estimated BAO scales and thus the recovered values of
D

A

and H�1. Fortunately, the contamination of the FoG
e↵ect is not perfectly degenerate with the geometrical dis-
tortions and thus in future sub-percent level precision exper-
iments the two e↵ects can be disentangled. Thus we hope in
that future measurements will allow us to focus on measure-
ments of the AP e↵ect and to infer cosmological parameters
pertaining to the expansion history.

We tested this methodology using mock galaxy catalogs
and found that we can recover the input cosmology....
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at the level of 2% and 5% resp.

Sabiu & Song (2016) 
arxiv:1603.02389



Cosmology Group at  
Korea Astronomy and Space Science Institute

Anisotropic BAO Peaks

attempt to obtain mostly bright central galaxies (in terms of the halo model), BOSS targets are selected based 
on a passive galaxy template (Maraston et al. 2009) and thus have almost constant stellar mass, this 
constitutes the CMASS sample. These galaxies also have a high bias (b∼2) (Nuza et al. 2013) making them 
advantageous for use with the 3PCF which has a naturally small  amplitude. In the future our methodology may 
be applicable to early data release of Dark Energy Spectroscopic  Instrument (DESI) (Levi et al. 2013) and the  
Euclid survey (Laureijs et al. 2011). 

As well  as cosmic distance scale measurements via the AP effect, the 3PCF has also been used recently to test 
for deviations from Einstein’s General Relativity. As mentioned earlier, I used the 3PCF in redshift space to 
distinguish between GR and modified gravity theories within simulations [Sabiu etal arxiv:1603.05750]. I found 
a significant difference between the 3rd order clustering statistics of the various gravity models tested. Following 
up this results, I propose that this deviation should be searched for within observational data. 

The first thing to check from this previous work is whether there are degeneracies between the deviations 
induced by gravity models and deviations from the usual  variation of cosmological parameters like dark mater or 
dark energy densities. If there is little or no degeneracy, we can proceed to practical  issues of fitting to 
observational data. This will require either a theoretical model from perturbative theory or fitting formula from 
simulations.

Specific Contents

In moving beyond the standard 2-point (2nd order) spatial clustering statistics a wealth of cosmological 
information can be unlocked. An increase of almost double in the precision determination of the expansion 
history and growth rates have been found by combining 2nd and 3rd order clustering statistics (Song etal arxiv:
1502.03099) 

Figure from (Song etal arxiv:1502.03099), showing the expected constraints from using the power spectrum 
and bispectrum alone and in combination.

Until  very recently the BAO method has only used the two-point correlation function or power spectrum of mass 
tracers in the Universe. In fact only two previous works have claimed a detection of the BAO feature using the 
three-point correlation function.

The first hint of the BAO in the three-point correlation function came from (Gaztanaga et al. 2009) who used the 
SDSS DR7 sample of Luminous Red Galaxies. Using a pixelation algorithm they were able to compute the 
3PCF on large scales in a relatively short time    allowing them to compute the isotropic  configuration with sides 
r1 = 33Mpc/h, r2 = 88Mpc/h and 55<r3<121Mpc/h. Their measurements can be seen in the figure below. In this 
work they found an unusually high baryon fraction, which corresponds to an enhanced BAO peak amplitude, 
however they did not use this measurement for constraining the distance scale.

[Attachment 6]

attempt to obtain mostly bright central galaxies (in terms of the halo model), BOSS targets are selected based 
on a passive galaxy template (Maraston et al. 2009) and thus have almost constant stellar mass, this 
constitutes the CMASS sample. These galaxies also have a high bias (b∼2) (Nuza et al. 2013) making them 
advantageous for use with the 3PCF which has a naturally small  amplitude. In the future our methodology may 
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information can be unlocked. An increase of almost double in the precision determination of the expansion 
history and growth rates have been found by combining 2nd and 3rd order clustering statistics (Song etal arxiv:
1502.03099) 

Figure from (Song etal arxiv:1502.03099), showing the expected constraints from using the power spectrum 
and bispectrum alone and in combination.

Until  very recently the BAO method has only used the two-point correlation function or power spectrum of mass 
tracers in the Universe. In fact only two previous works have claimed a detection of the BAO feature using the 
three-point correlation function.

The first hint of the BAO in the three-point correlation function came from (Gaztanaga et al. 2009) who used the 
SDSS DR7 sample of Luminous Red Galaxies. Using a pixelation algorithm they were able to compute the 
3PCF on large scales in a relatively short time    allowing them to compute the isotropic  configuration with sides 
r1 = 33Mpc/h, r2 = 88Mpc/h and 55<r3<121Mpc/h. Their measurements can be seen in the figure below. In this 
work they found an unusually high baryon fraction, which corresponds to an enhanced BAO peak amplitude, 
however they did not use this measurement for constraining the distance scale.

[Attachment 6]

Can we squeeze any more information from the BAO?

Slepian, Eisenstein etal detected the BAO structure in the 
isotropic ‘averaged’ 3PCF (arxiv:1607.06097)

https://arxiv.org/find/astro-ph/1/au:+Slepian_Z/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Slepian_Z/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Eisenstein_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Eisenstein_D/0/1/0/all/0/1
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The AP effect in the 3PCF
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is intrinsically nonlinear. Even at large scales, higher-order con-
tributions to the mapping formula are non negligible. For this
reason, there have been several improved models of RSD that
have been proposed that add correction terms to the Kaiser for-
mula in Eq. (1). Taking account of those e↵ects is thus crucial
and essential for unbiased parameter estimation in the practical
data analysis. On the other hand, the estimation of statistical er-
rors does not typically depend on those elaborate factorized for-
mulations, because the statistical error of each parameter mainly
comes from the measurement uncertainties, including the cos-
mic variance and shot noise. Unless a significant contribution
of higher-order corrections arises, the structure of parameter de-
generacies will remain unchanged. Hence, in this paper, we do
not consider such higher-order corrections.

Nevertheless, the suppression of the galaxy clustering ampli-
tude due to random motions is a non–perturbative e↵ect, which
significantly a↵ects the power spectrum even at large scales, and
should be accounted for in the basic formulation of Eq. (1). Here,
we assume that this FoG e↵ect is given in a factorized form, and
multiplied as,

P̃(k) = DP
FoG(k)P̃lin(k) . (3)

The DP
FoG(k) is given by the Gaussian form as,

DP
FoG(k) = exp


�

⇣
kµ�p

⌘2
�
, (4)

where �p denotes the dispersion of the one-point PDF of the ve-
locity in one-dimension. Note that at smaller scales, the virial
motion of galaxies inside a cluster of galaxies also leads to a
suppression of the power spectrum in redshift space. When
(kµ�p)2 ⌧ 1, the leading order term of Eq. (3) is dominant over
all other higher orders, and the estimated errors are immune from
the exact functional form of Eq. (3). The linear �p is used for
the fiducial value.

While the initial condition for perturbations is assumed to be
Gaussian, gravitational evolution naturally induces mode-mode
coupling, giving rise to the non-vanishing bispectrum. Further-
more, coupled with galaxy bias and RSD, the bispectrum in red-
shift space becomes rather complicated. The resultant leading-
order expression for the bispectrum (e.g., ?), valid at large scales,
is given by,

B̃PT(k1,k2,k3) = 2
h
Z2(k1,k2)Z1(k1)Z1(k2)P(k1)P(k2) .

+ cyclic
i

(5)

The kernel Z2 is defined as,

Z2(ki,k j) ⌘ b2

2
+ bF2(ki,k j) + fµ2

i jG2(ki,k j) (6)

+
fµi jki j

2

"
µi

ki
(b + fµ2

j ) +
µ j

k j
(b + fµ2

i )
#
,

where we define µi = (ki · ẑ)/ki, ki j = ki + k j, µi j = (ki j · ẑ)/ki j,
with ẑ being the line-of-sight unit vector. Here, we incorporate
the uncertainty of the nonlinear galaxy bias characterized by b2
into the kernel Z2, adopting the local bias prescription (e.g., ?),
i.e., �g = b �m + (b2/2) �2m + · · · . In the above, the functions F2
and G2 are the standard PT kernel in real space, given by,

F2(ki,k j) =
5
7
+
⌘i j

2

 
ki

k j
+

k j

ki

!
+

2
7
⌘2

i j (7)

G2(ki,k j) =
3
7
+
⌘i j

2

 
ki

k j
+

k j

ki

!
+

4
7
⌘2

i j . (8)

with ⌘i j = (ki · k j)/(kik j). Note that the configuration of bispec-
trum satisfies the triangular condition, which is expressed by the
directional vector constraint,

k1 + k2 + k3 = 0 . (9)

In contrast to the redshift-space power spectrum, the influ-
ence of nonlinear RSD on Eq. (5) is not yet fully understood and
studied in detail. Although it deserves further investigation, we
can make an educated guess on the possible damping e↵ect due
to the random motion of galaxies. The FoG e↵ect in the bispec-
trum is assumed to be Gaussian as ?,

DB
FoG(k1,k2,k3) = exp

h
�(k2

1µ
2
1 + k2

2µ
2
2 + k2

3µ
2
3)�2

p

i
. (10)

Then the observed bispectrum is given by,

B̃(k1,k2,k3) = DB
FoG(k1,k2,k3)B̃PT(k1,k2,k3) . (11)

Again, when (kµ�p)2 ⌧ 1, the detailed functional form of DB
FoG

is not important for our estimation.
In addition to the anisotropies induced by the RSD, the ob-

served galaxy clustering also exhibits anisotropies through the
Alcock-Paczynski (A-P) e↵ect. This can happen if the back-
ground expansion of the real universe di↵ers from the fiducial
cosmology used to convert the redshift and angular position of
each galaxy to the comoving radial and transverse distances.

While this e↵ect leads to the modulation in the shape and
amplitude of the power spectrum and bispectrum, if the shape
of these quantities is a priori known, it o↵ers a unique opportu-
nity to measure the angular diameter distance DA(z) and Hubble
parameter H(z) of distant galaxies at redshift z using the char-
acteristic shape of the galaxy clustering in both the radial and
transverse directions. Furthermore, providing information on the
evolution of density and velocity fields, the two types of apparent
anisotropies (i.e., RSD and A-P e↵ects) become distinguishable,
and the geometric distances DA and H can be separately and ac-
curately determined. This is indeed possible if we know at least
the broadband shape of spectrum. In other words, given a ac-
curate theoretical template which describes the broadband shape
of the power spectrum and bispectrum, the simultaneous con-
straints on the geometric distances and growth of structure are
made possible. We dub this method as a broadband A-P test.

The anisotropies in the power spectrum caused by the A-P
e↵ect are modeled as follows. Denoting the true power spectrum
by P̃ , the observed power spectrum becomes

P̃obs(k, µ) =
 

Htrue

Hfid

! 0BBBB@
Dfid

A

Dtrue
A

1
CCCCA

2

P̃(q, ⌫) , (12)

where (k, µ) denotes the fiducial coordinates for the underlying
cosmological model, and (q, ⌫) represents the coordinates in the
true cosmology.

The A-P e↵ect for the bispectrum is also modeled in a similar
way, and the resultant shape of bispectrum depends now on five
parameters, i.e., (k1, k2, k3, µ1, µ2). The observed bispectrum is
thus related to the true one given in Eq. (11) through,

B̃obs(k1, k2, k3, µ1, µ2) =

 
Htrue

Hfid

!2 0
BBBB@

Dfid
A

Dtrue
A

1
CCCCA

4

⇥ B̃(q1, q2, q3, ⌫1, ⌫2) . (13)

The relations between two coordinates are give by,

qi = ↵(µi)ki , (14)

Article number, page 2 of 5

C. Sabiu et al.: A measurement of the BAO in the 3PCF of BOSS DR12

!1

!2 x

y

z

0

1

2

r1

r2

r3

Fig. 1. Coordinate system used to denote a specific triangular config-
uration. The line-of-sight direction is taken to be along the z-axis.

and

⌫i =
µi

↵(µi)
Htrue

Hfid , (15)

where ↵(µi) is defined by,

↵(µi) ⌘
8>><
>>:

0
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+

2
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i
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.

The cosine of angle between two vectors, ⌫i j = (qi · q j)/(qiq j),
is given by,

⌫i j =

0
BBBB@

Dfid
A

Dtrue
A

1
CCCCA

2
⌘i j

↵(µi)↵(µ j)

+

2
6666664
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µiµ j

↵(µi)↵(µ j)
. (16)

Here, we define ⌘i j = (ki · k j)/(kik j).
Accordingly, the correlation function ⇠B is defined on 5 co-

ordinates space of (r1, r2, r3, µ1, µ2). Higher order correlations
are usually denoted as ⇠n(r1, ...., rn), where n is the order of the
correlation function. As an example, the 3PCF is defined as the
joint probability of there being a galaxy in each of the volume el-
ements dV1, dV2 and dV3 given that these elements are arranged
in a configuration defined by the sides of the triangle, r1, r2 and
r3. The joint probability can be written as

dP1,2,3 = n̄3[1 + ⇠(r1) + ⇠(r2) + ⇠(r3) + ⇣(r1, r2, r3)]dV1dV2dV3.

(17)

The observed ⇠B in redshift space is appear as anisotropy along
the line of sight, which causes the additional angular dependence
of ✓1 and ✓2 presented in Fig. 1. The µ denotes the cosine of this
angle.

However the observed galaxy clustering anisotropies are
plagued by systematic uncertainties which causes the measured
geometric distances through BAO feature unreliable compared
to other distance probes of the Universe. When the galaxy clus-
tering is viewed from the redshift space, the cosmological den-
sity and velocity fields couple together and evolve nonlinearly.
In addition, the mapping formula between the real and redshift

100 120 140 160 180 200 220 240
r [Mpc]
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20000
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)

Fig. 2. Monopole component of the three point correlation func-
tion is presented. The black solid curve represents the average correla-
tion function, and the blue solid curve represents the measurement from
BOSS DR12.

space is intrinsically nonlinear. These nonlinearities prevent us
from inferring the linear coherent motion from the redshift space
clustering straightforwardly. Although an accurate theoretical
model for the redshift distortion was proposed in, there is no con-
firming statement whether the measured distances are immune
from the complexity arising from all di↵erent types of theoreti-
cal models to explain the cosmic acceleration.

We propose that the geometrical distances can be determined
with exploiting BAO feature as minimal as possible. In the con-
text of standard cosmology, the BAO peak structure is known
by analysing cosmic microwave background (hereafter CMB)
anisotropy produced before the last scattering surface. The pri-
mordial BAO feature is probed in precision by CMB experi-
ments. Then we claim that there is a unique correspondence
between the measured primordial BAO feature by CMB and the
observed geometrical BAO signature by galaxy clustering sur-
vey, which is nearly independent of other cosmological uncer-
tainties.

The geometrical signature of primeval BAO is pre-
cisely observed through galaxy clustering correlation function
⇠B(r1, r2, r3, µ1, µ2). The clustering patterns are di�cult to be vi-
sualised. The location of BAO peaks can be easily found in the
monopole component of ⇠B, which is presented in Fig. 2. The
monotonous anisotropic shape is observed with inner contours at
ri <⇠ 150 Mpc. The squeezed clustering pattern along the radial
direction is determined by the competition between monopole
and quadrupole amplifications which are caused by density and
velocity fluctuations respectively. BAO peak structure is ob-
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Triangular configuration 
for the 3PCF. 
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The anisotropic 3PCF

Using 400 Quick-Particle-Mesh 
(QPM) mock catalogues mimicking 
the BOSS DR12 CMASS survey
 
We calculate the 3PCF for 
equilateral configurations at 
different angles to the line-of-sight 

When one side of the triangle lies 
close to the los we see the usual 
kaiser suppression.

This suppression disappears when 
looking at triangles that lie flat on 
the plane of the sky.
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The generalized BAO membrane

From the mean of the mock 
catalogues we determine the 
peak location as a function of 
angle

This forms a membrane in the 
(D, 𝜽1, 𝜽2) space

Distortions or warpings of the 
BAO membrane will inform us 
on about DA & H-1
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Using SDSS DR12 CMASS 
North and South patches 
combined

We measure the isotropic 3PCF 
and determine the peak location

Error are from 400 QPM mocks
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Isotropic (angle averaged) equilateral 3PCF

The 3-point BAO
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Again using the DR12 CMASS 
Galaxies

I measure the anisotropic 
equilateral 3PCF 

We again see a clear peak 
structure for various angular 
configurations

A first detection of the BAO 
structure in the anisotropic 
redshift-space 3-point 
correlation function

Anisotropic equilateral 3PCF

The 3-point BAO
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This is work in progress and will 
be completed soon.

Only thing left to do is fit the DA 
& H-1 by varying the peak points 
measured in DR12 to the 
simulated membrane structure.

Originally I thought that I could 
fit to a simulation template, 
however the ‘off-peak’ shifts 
must be modeled....

So I have to go to perturbation 
theory. Nuala McCullagh 
(Durham) is helping me on this

Anisotropic equilateral 3PCF
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Conclusions
We wanted clean measurements of DA(z) & H-1(z) as they are 
fundamental quantities that describe the geometry and 
evolution of the background universe.
- we have measured the higher order BAO structure in the 
3PCF of BOSS DR12 galaxies
- soon we will extract DA(z) & H-1(z) measurements
Things to do......
- Covariance estimation - large number of measurement bins
P(k,mu) 
Bi(k1, k2, k3, mu1, mu2)
- Theory - must model off-peak shifts for DA(z) & H-1(z). Maybe tree 
level is ok for BAO scales. 
- Systematics - may be more severe than for 2-point statistics.
Will same procedure as Ashley Ross etal work for 3PCF?
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